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Tile experimental  model is shown in Fig. 1. Hollow cube 2 with a 

volume of 1 cm s was formed inside a plexigtas assembly 74 x 74 x 16 

mm in size. The block was compressed between brass plates (4 and 5) 
144 x 144 x 6 mm in size. Plate 4 was heated by an electr ic  heater, 

and plate 5 was cooled by a spray-type cooler. The hollow cube was 

fi l led with fluid by means of channels 8, which enter at the cube 
edges. The motion of this fluid was made visible by suspending l ight-  
scattering particles of aluminum powder in it. The experiments were 

performed with water. Thermal contact  between the plates and the 
block was improved with machine oil, and between the [plexiglas] 

ptates in the assembly with water bled from the hollow cube. 

Copper-constantan thermocouples with five junctions measured 

the temperature differences ATt, AT2, and l i t  s between, respectively, 
the boundaries of plate 1, hollow cube 2, and plate 3 along the axis 

of symmetry, as well  as the temperature difference Z~T 0 between 

junctions 6 and 7. lunction 7 was in contact with the bulb of a 

thermometer showing the room temperature T R. The temperature 

T R + ZXT 0 -- (ATe/2) at the center of the hollow cube was selected 

equal to TR, and this condition was satisfied for AT 0 = AT2/2 and TR = 

= const. After switching off the heater and the cooler, the steady-state 

temperature difference l iT,  + AT 2 + ATe between them decreased 
exponentially, but the experimental  constant AT, / l iT  a and the t em-  

perature at the cube center did not change significantly. The fact 

that the results for this case and for steady-state regimes are in dose  

agreement enables us to treat this case as if it were quasi steady. 

The Rayleigh and Nusselt numbers were given by: 

R = g~--- la~,T=, iV - -  • + ~a*ATs 
~X uAT~ 

Here g is the acceleration of gravity, ~, u, X, and ~ are, respec- 

tively, the coefficients of volume expansion, of kinematic viscosity, 

Fig. 1 

and of thermal diffusivity and thermaI conductivity for the water 

inside the hollow cube, l is the length of the cube edge. The experi- 
mental  constants :4~ and ~a are found, when the fluid is heated from 

above, from the following equations: 

• = • = xs*AT3,  i . e . ,  for N = 1. 

In this case the fluid is in mechanical  equilibrium and heat is 

transferred purely by means of heat conduction. When this equilibrium 

breaks down because of fluid passing through the hollow cube, i.e., 

in the case of convection, ~ T  1 = ~<~/xT s > ~Z~T 2 and N > 1. 
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Fig. 2 

Consequently, N -- 1 >-- 0, equal to the ratio of the heat fluxes trans- 

ported by the motion and the conduction of the fluid, can serve as 

a dimensionless measure of convective heat  transfer, and as a measure 

of the flow rate. 
When the fluid is heated from below, two forms of convective 

laminar flow are discovered. These two forms are shown diagram- 

mat ica l ly  in Fig. 2 as they appear at the central  horizontal plane 

of the hotlow cube. In ease a (the first flow) the fluid circulates 

vertically,  rising in one half of the hollow cube and descending in the 

other. In ease b (the second flow) the fluid rises in two [diagonally] 

opposite vert ical  quarters of the cube and flows down through the other 

two. In both cases the fluid moves in approximately e l l ip t ica l  paths. 

The motion is more nearly e l l ip t ica l  with lower and lower flow rates. 

The axes of the ellipses are not quite vertical,  being slightly inclined 

relative to the cube axes in the direction of fluid motion. Photographs 

of the first flow in vert ical  cross sections 1-1 and 2 -2  (Fig. 2a) are 

reproduced in Figs. 3a and b, respectively (R = 10.85 "10 a, N = 2.80; 

the shutter speed was 0.5 • 0.5 see, and the exposure took 15-30 see). 
Photographs of the second flow in vert ical  cross section 1-1  (Fig. 2b) 
practical ly reproduce Fig. aa in appearance, and in cross section 2 -2  

are its mirror image.  Thus, the second flow has mirror-symmetry 

relative to the vert ical  diagonal planes. Consequently, the direction 

of fluid motion and the inclination of the ellipses on both sides of the 
central vert ical  plane to which they are parallel  are the same for the 

first flow and opposite for the second. In the ease of the second flow 

there are two such planes. In both types of flow the fluid is at rest at 

Fig. 3 
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the walls (because of adhesion) and at the center of the ellipses, 
so that the nodal planes coincide with the cube faces, and the nodal 
straight lines (the axial lines in Fig. 2) are situated in the central 
horizontal plane in the same way as for transverse oscillations of 
a square plate. Our inverting the model about horizontal axes can 
rotate the flow in the horizontal plane by ~/2 or reverse its direction 
of motion. 
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Fig. 4 

The equations for heat transfer by the first and second flows are 
represented in Fig. 4 by the straight lines a and b, respectively. These 
lines intersect the axis of abscissas (N -- 1) 2 = 0 at points R l and R2, 
which are the critical points. It was found that R t = 3650 • 100 and 
R 2 = 6000 • 200. The straight line a is described by the equation 
(N -- 1) 2 = 0.449 �9 10 -~ (R -- R1), and the straight line b by the equa- 
tion (N -- 1) 2 = 0,267.10 "s (R -- Rz). Thus, Landau's law [1-5] turns 
out to be valid for both types of motion. The numerical coefficient 
is connected with the critical number in both equations in the same 

way: ciRi = 1.62 • 0.02 (i = 1, 2). For R > 3Ri the experimental points 
deviate m the right from the straight lines a and b and lie on the 
straight lines if (N -- 1) 3 is plotted on the axis of ordinates (the dark 
circles denote the points obtained for steady-state regimes, and the 
open circles those for quasi-steady-state regimes). 

As the heating decreased, the second flow was not completely 
damped, but for R > 1.3R2 and for N -- 1 > 0.6 it changed into the 
first, more stable flow (lines 4). During the change the elliptical 
motion in one half of the hollow cube stopped and reversed direction 
with a change of inclination of the ellipses. Change in the direction 
of motion by pumping fluid through the hollow cube or by deforming 
the temperature field in the assembly can cause the first flow to 
change into the less stable second flow (line 9), and vice-versa 
(line 8). Close to R 1 (in the experiments for R < R2) the first flow 

cannot change into the second, and so after it is disturbed it always 
reestablishes itself (line 2). For R < R 1 the first flow is damped. 
Mechanical equilibrium of the fluid is reestablished after it is dis- 
turbed (line 1). Temperature and hydrodynamic perturbations are 
rapidly damped for R < R t and destroy the equilibrium for R > R 1. 

Steady flow for a given temperature difference AT t + AT2 + AT 3 
between the faces of the block can only be damped out by inverting 
the model so that the heater is on top. After inversion, the Archime- 
dean forces damp the fluid motion in one second, and the perturbed 
temperature field reorganizes itself in several minutes. The transitions 
caused by inverting the model are shown by lines 8 and 7. After 
reinversion, the Archimedean forces destroy the equilibrium, and 
there is a flow from the heated face which perturbs the fluid in the 
hollow cube in a complicated manner. After several seconds the 
complicated flow is replaced by laminar flow, which assumes a 
steady-state character after several minutes. The first flow results 
in the case of transition 3, and either the second or first flow for 
transition 7. In these cases, as a result of the rising of hot fluid and 
the sinking of cold fluid, the upper cold face of the hollow cube is 
warmed, and the lower cold face cools, while the potential energy 
of the fluid in the gravity field decreases. Decrease in the temperature 
difference AT2 between the cube faces causes increase in the temper- 
ature differences AT 1 and ZXT 3 between the faces of the [brass] plates 
covering the hollow cube. The insignificant decrease in the over-all 
difference of these temperatures is caused by some decrease in the 
total thermal resistance of the assembly due to convection in the 
hollow cube. Thus, increase of the heat flux through the plate and the 
hollow cube occurs during decrease of heat transfer by pure fluid 
heat conduction. It follows from this that for a given temperature 
difference between the assembly faces the change in heat transfer due 
to perturbed motion of the fluid is greater in absolute magnitude but 
of opposite sign to the change in heat transfer resulting from the 
thermal conductivity of the fluid (lines 1-9). 
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